Maia Chess
A Human-Like Neural Network Chess Engine

Ashton Anderson Reid McIlroy-Young
University of Toronto

Reid McIlroy-Young
University of Toronto
Siddhartha Sen
Microsoft Research
Jon Kleinberg
Cornell University
Ashton Anderson
University of Toronto
Chess and AI: A Long History

Alan Turing created the first chess-playing algorithm in 1948, before computers could run it.

Claude Shannon described minimax in chess in 1949.

Long-standing AI problem: “Chess is the drosophila of artificial intelligence” — John McCarthy, 1967

“However, computer chess has developed much as genetics might have if the geneticists had concentrated … on breeding racing Drosophila. We would have some science, but mainly we would have very fast fruit flies.” — John McCarthy
Chess and AI: A Long History

Deep Blue defeats Kasparov in 1997

AlphaZero defeats Stockfish in 2017
Chess AI and People

“Here’s what I would do” — 3400-rated calculation beast 🤖

“But what should I do?” — 1100-rated human 🙁
Chess AI and People

Stockfish level 4

Ashton
Chess AI and People

Stockfish level 4

Ashton
Chess AI and People

Stockfish level 4

Ashton
Chess AI and People

How do we bridge the gap between artificial and human intelligence?

Chess as a model system:

1) AI reached superhuman performance at least 15 years ago

2) There is voluminous data on human activity in chess

3) Wide range of human skill levels
How can we algorithmically capture human style in chess?
Predict the next move a human, at a specific skill level, will make in a real game.
Data

The largest openly available dataset of human games
1.7B games and counting
Players, moves, move times, etc.
Background: AlphaZero and Leela
Background: Attenuated Engines

Depth-limited Stockfish
Limit search depth to simulate fallible thinking

Early Leela models
Take Leela versions early in their self-play training to simulate not-fully-evolved understanding
Do Attenuated Engines Perform Well?

Attenuated engines match aggregate human performance (rating)

Do they match granular human decision-making (moves)?
Evaluation Set

From December 2019:

1. Create bins for each range of 100 rating points
2. Divide games into bins by rating of both players
3. Select 10,000 games from each bin between 1100 and 1900
4. Metric: move-matching accuracy: % of positions for which model’s move matches the human move played in the game.
What Does It Mean to Perform Well?

Move-matching Accuracy vs. Rating

- Move-matching Accuracy
- Rating

1100 1300 1500 1700 1900
Stockfish

Attenuated Stockfish: limited to various depths

Move-matching accuracy increases with rating of players being predicted

Relatively low accuracy, no skill-level targeting

Interesting non-monotonicity: d1 and d15 both more accurate than d5
Leela

Attenuated Leela: versions at different points in training

Move-matching accuracy flat across ratings of players being predicted

Somewhat higher accuracy, no skill-level targeting
Key idea:

Learn from human play instead of self-play

Goal: predict the next move a human will play
Maia–Leela Comparison

<table>
<thead>
<tr>
<th></th>
<th>Leela</th>
<th>Maia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Self-play games</td>
<td>Human games</td>
</tr>
<tr>
<td>Goal</td>
<td>Optimal play</td>
<td>Human-like play</td>
</tr>
<tr>
<td>Method</td>
<td>Reinforcement learning</td>
<td>Classification</td>
</tr>
<tr>
<td>Tree search</td>
<td>Monte-Carlo tree search</td>
<td>No tree search</td>
</tr>
<tr>
<td>Policy</td>
<td>Optimal moves</td>
<td>Human moves</td>
</tr>
<tr>
<td>Value</td>
<td>Probability of winning given optimal play</td>
<td>Probability of human winning</td>
</tr>
</tbody>
</table>
Maia Training

Train a Maia for each rating level between 1100 and 1900

Maia 1100 12M games between 1100s
Maia 1200 12M games between 1200s
Maia 1300 12M games between 1300s
Maia 1400 12M games between 1400s
Maia 1500 12M games between 1500s
Maia 1600 12M games between 1600s
Maia 1700 12M games between 1700s
Maia 1800 12M games between 1800s
Maia 1900 12M games between 1900s
Maia Move-Matching Performance

Maia: versions trained on different rating levels

High accuracy: best performance >50%

Move-matching accuracy maximised at target rating level

Maia’s lowest accuracy, Maia 1900 tested on 1100-rated players (46%), is still higher than any Stockfish or Leela model we tested

High accuracy and skill-level targeting
Maia Move-Matching Performance

Shaded region: rating levels not explicitly targeted (2000+)
The Maias all agree with each other strongly.

The Maias do not share training data.

Both Stockfish and Leela are less likely to agree with attenuated versions of themselves than a strong Maia.
Maia: Architecture Decisions

Base Maia vs. a version with no history and a version with Leela-style rollouts (calculation)

Including calculation hurts move-matching performance by ~5–8% (moves become too strong)

Dropping history hurts performance by 2–3%
Maia: A Framework to Understand Human Play

Maia predicts mistakes surprisingly well

When players make even the most glaring blunders, Maia predicts the exact move >25% of the time

Performance increase relative to other models is larger for blunders
Since we can predict human play at different levels, there is a reliable, predictable, and maybe even algorithmically teachable difference between one human skill level and the next.
Maia: A Framework to Understand Human Play

In this position, Maia levels 1100–1400 correctly predict White will play the tempting but wrong move b6 (the move played in the game).

Maia levels 1500–1900 predict that, on average, players rated 1500 and above will play the correct bxa6, forcing the Queenside open to decisive effect.

maichess.com/maia-viz
Maia Bots

@maia1: Maia 1100

@maia5: Maia 1500

@maia9: Maia 1900

125,000+ games

50,000+ games

50,000+ games

Playing Maia 1100 is like playing a committee of 1100-rated players, etc.
Maia Bots - Community Engagement

7,000+ unique human opponents in 4 days

Max # of games started in an hour: 1,491

Yes, it's much more enjoyable to play against machines when they lose! 🤖

Garry Kasparov @Kasparov63

Meet Maia Chess || A Human-like Neural Network Chess... 115K views • 3 days ago

Maia Chess: A human-like neural network chess engine 27K views • 3 days ago
Maia Bots - Press Coverage

Introducing Maia, a human-like neural network chess engine

A guest post from the Maia Team

New chess AI bridges gap between human and artificial intelligence

Matt Hintsa

Assistant Professor Ashton Anderson, PhD student Reid McIlroy-Young, and collaborators have developed a chess AI that can predict human play at different skill levels much more accurately than existing AIs.

Researchers built an AI that plays chess like a person, not a super computer

It's been 15 years since a human has conquered a computer in a chess tournament. The Maia engine...

By Kris Holt | 01.26.2021

Researchers are working on a chess-playing AI that emulates human-level skill

Maia doesn't try to make the perfect moves

By Cohen Cobert, January 26, 2021, 9:11 PM | 7 comments

An artificially incandescent chess engine that plays like a human

In 1997, IBM's Deep Blue made history the first computer to beat a world chess champion. Gary Kasparov. Advances in AI have made chess-playing computers more and more formidable since then. A team including Jon Kleinberg, the Tech University Professor of Computer Science, developed an artificially intelligent chess engine that offers a more enjoyable chess-playing...

This AI chess engine aims to help human players rather than defeat them

A new chess system called Maia can find mistakes that players of different skill levels should work on.

Thomas Macaulay | 2 days ago
Summary

Maia is a human-like neural network chess engine

Maia captures human style in chess at targeted skill levels

You can play Maia online now!

Next: algorithmic and data-driven improvement tools
Thanks!

“Aligning Superhuman AI with Human Behavior: Chess as a Model System”
Knowledge Discovery and Data Mining (KDD), 2020.

maiachess.com
@maia1 @maia5 @maia9 on Lichess

Reid McIlroy-Young
University of Toronto

Siddhartha Sen
Microsoft Research

Jon Kleinberg
Cornell University

Ashton Anderson
University of Toronto
Questions

A few Questions I was told about:

• How can we learn from games played by Maia Engine to become a better player?
• What are the pre-processing steps for Datasets used for Chess Engines?
• Possible future modifications possible of the Maia Chess Engine.
• Can Blockchain algorithms be used for designing chess engines?